研究成果
2024年11月現在
●論文成果抜粋
NEXTAで行われている研究について主要な成果論文の抜粋を示します。NEXTAでは金属材料に関する基礎・応用研究を、共同研究としてオックスフォード大学をはじめとする外部機関と積極的に行っています。
論文著者・題目 | |
2024年 | Manabe, N; Suzuki, AS; Ninagawa, M; Wakabayashi, H; Hirayama, N; Niinobe, K; Tang, YT; Utada, S; McCartney, DG; Reed, RC; Kitagawa, H: “Ultralow-Temperature Sintering of Titanium Powder by Spark Plasma Sintering under Cyclic Pressure,” Advanced Engineering Materials, 26 (2024) 2400965. https://doi.org/10.1002/adem.202400965 |
Mukherjee, T; Shinjo, J; DebRoy, T; Panwisawas, C; “Integrated modeling to control vaporization-induced composition change during additive manufacturing of nickel-based superalloys,” npj Computational Materials, 10 (2024) 230. https://doi.org/10.1038/s41524-024-01418-z |
|
Aliyu, AAA; Puncreobutr, C; Kuimalee, S; Phetrattanarangsi, T; Boonchuduang, T; Taweekitikul, P; Panwisawas, C; Shinjo, J; Lohwongwatana, B; “Laser-inherent porosity defects in additively manufactured Ti-6Al-4V implant: Formation, distribution, and effect on fatigue performance,” Journal of Materials Research and Technology, 30 (2024) 5121-5132. https://doi.org/10.1016/j.jmrt.2024.04.225 |
|
Zhang, K; Chen, Y; Marussi, S; Fan, X; Fitzpatrick, M; Bhagavath, S; Majkut, M; Lukic, B; Jakata, K; Rack, A; Jones, MA; Shinjo, J; Panwisawas, C; Leung, CLA; Lee, PD; “Pore evolution mechanisms during directed energy deposition additive manufacturing,” Nature Communications, 15 (2024) 1715. https://doi.org/10.1038/s41467-024-45913-9 |
|
Shinjo, J; Kutsukake, A; Wakabayashi, H; Arakawa, K; Ogawara, A; Uchida, H; Panwisawas, C; Reed, RC; “In-process monitoring and direct simulation of Argon shielding gas and vapour dynamics to control laser-matter interaction in laser powder bed fusion additive manufacturing,” Additive Manufacturing, 80 (2024) 103953. https://doi.org/10.1016/j.addma.2023.103953 |
|
2023年 | Shibata, A; Miyamoto, G; Morito, S; Nakamura, A; Moronaga, T; Kitano, H; Gutierrez-Urrutia, I; Hara, T; Tsuzaki, K; “Substructure and crystallography of lath martensite in as-quenched interstitial-free steel and low-carbon steel,” Acta Materialia, 246 (2023) 118675. https://doi.org/10.1016/j.actamat.2023.118675 |
Dai, G; Sun, Z; Li, Y; Jain, J; Bhowmik, A; Shinjo, J; Lu, J; Panwisawas, C; “Grain refinement and columnar to equiaxed transition of Ti6Al4V during additive manufacturing via different laser oscillations,” International Journal of Machine Tools and Manufacture, 189 (2023) 104031. https://doi.org/10.1016/j.ijmachtools.2023.104031 |
|
Shinjo, J; Kutsukake, A; Arote A; Tang, YT; McCartney, DG; Reed, RC; Panwisawas, C, “Physics-based thermal-chemical-fluid-microstructure modelling of in-situ alloying using additive manufacturing: Composition-microstructure control,” Additive Manufacturing, 64 (2023) 103428 https://doi.org/10.1016/j.addma.2023.103428 |
|
2022年 | Tang, YT; Pham, AH; Morito, S; McCartney, DG; Reed, RC, “On the solid-state dendritic growth of M7C3 carbide at interfaces in an austenitic system,” Scripta Materialia, 213 (2022) 114585 https://doi.org/10.1016/j.scriptamat.2022.114585 |
Shiojiri, D; Iida, T; Kakio, H; Yamaguchi, M; Hirayama, N; Imai, Y, “Enhancement of thermoelectric performance of Mg2Si via co-doping Sb and C by simultaneous tuning of electronic and thermal transport properties,” Journal of Alloys and Compounds, 891 (2022) 161968 https://doi.org/10.1016/j.jallcom.2021.161968 |
|
Shinjo, J; Panwisawas, C, “Chemical species mixing during direct energy deposition of bimetallic systems using titanium and dissimilar refractory metals for repair and biomedical applications,” Additive Manufacturing, 51 (2022) 102654 https://doi.org/10.1016/j.addma.2022.102654 |
|
Hara, T; Habe, M; Nakanishi, H; Fujimura, T; Sasai, R; Moriyoshi, C; Kawaguchi, S; Ichikuni, N; Shimazu, S, “Specific lift-up behaviour of acetate-intercalated layered yttrium hydroxide interlayer in water: application for heterogeneous Bronsted base catalysts toward Knoevenagel reactions,” Catalysis Science & Technology, 12 (2022) 2061-2070 |
|
2021年 | Shinjo, J; Panwisawas, C, “Digital materials design by thermal-fluid science for multi-metal additive manufacturing,” Acta Materialia, 210 (2021) 116825 https://doi.org/10.1016/j.actamat.2021.116825 |
Panwisawas, C; Gong, YL; Tang, YT; Reed, RC; Shinjo, J, “Additive manufacturability of superalloys: Process-induced porosity, cooling rate and metal vapour,” Additive Manufacturing, 47 (2021) 102339 https://doi.org/10.1016/j.addma.2021.102339 |
|
2020年 | Arakawa, K; Marinica, MC; Fitzgerald, S; Proville, L; Duc, NM; Dudarev, SL; Ma, PW; Swinburne, TD; Goryaeva, AM; Yamada, T; Amino, T; Arai, S; Yamamoto, Y; Higuchi, K; Tanaka, N; Yasuda, H; Yasuda, T; Mori, H, “Quantum de-trapping and transport of heavy defects in tungsten,” Nature Materials, 19 (2020) 508-511 https://doi.org/10.1038/s41563-019-0584-0 |
Du, JP; Geng, WT; Arakawa, K; Li, J; Ogata, S, “Hydrogen-Enhanced Vacancy Diffusion in Metals,” Journal of Physical Chemistry Letters, 11 (2020) 7015-7020 |
|
2018年 | Suzuki, A; Kitagawa, H; Ido, S; Pham, AH; Morito, S; Etoh, T; Kikuchi, K, “Microstructure control of Bi0.4Sb1.6Te3 thermoelectric material by pulse-current sintering under cyclic uniaxial pressure,” Journal of Alloys and Compounds, 742 (2018) 240-247 https://doi.org/10.1016/j.jallcom.2018.01.269 |
●科研費(2018年以降実績)
・新城淳史,基盤研究(B),ISS実験研究成果の社会還元のための噴霧シミュレータ開発と噴霧物理解明,2018年4月1日~2020年3月31日
・新城淳史,基盤研究(B),新規開発した微粒化・遷臨界蒸発モデルによる航空エンジン燃焼器性能向上の解析,2020年4月1日~2023年3月31日
・荒河一渡,基盤研究(A),点欠陥を骨組みとする新しい同素変態―鉄鋼材料の新たな高強度化法の開拓,2020年4月1日~2024年3月31日
●受託研究
・件数と総額
2018年度 3件 16,681千円
2019年度 2件 1,616千円
2020年度 2件 4,869千円
2021年度 5件 12,677千円
2022年度 4件 18,470千円
●共同研究
・件数と総額
2018年度 6件 13,481千円
2019年度 7件 70,783千円
2020年度 6件 49,333千円
2021年度 10件 81,014千円
2022年度 5件 89,121千円